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The purpose of this report is to describe the problem, data, and results of our 
project. We will also offer a visual exploration of the data and show results we 
obtained. 
 
PROBLEM  
Low-grade gliomas (LGGs) are brain tumors that originate from glial cells, and 
are considered the slowest growing type of glioma in adults to date.1 These tumor 
cells are capable of growing undetected into the surrounding brain tissue, with 
the potential of developing into a more aggressive grade tumor, which can 
disrupt connections and pressure levels between normal brain cells.2 In general, 
LGGs are typically only initially identified through an MRI scan of the brain.1 
These scans offer a detailed view of the tumor and can sometimes provide 
valuable information for diagnostic purposes. 
 
However, MRI diagnosis and annotations by trained radiologists are time 
intensive and training a model with deep learning could lead to diagnosis much 
quicker. As such, there is interest for these MRI scans of low-grade gliomas to be 
assessed through use of a convolutional neural network for segmentation. In this 
way, tumor segmentations can be algorithmically-produced, decreasing the time 
needed for a diagnosis and detecting tumours that may normally go undetected 
by an average human annotator. 

DATA 
The dataset we will be using consists of brain MR images with FLAIR abnormality 
segmentation masks. FLAIR (fluid-attenuated inversion recovery) is a type of MRI 
sequence used to selectively null the signal for certain tissues.3 In this case, it 
removes signals from the cerebrospinal fluid in the images, which allows tumors 
to be more visible. The images themselves are from The Cancer Imaging Archive, 
and correspond to 110 patients. These patients are included in The Cancer 
Genome Atlas LGG collection, where there is data available for FLAIR and 
genomic cluster data. 
 
The data itself consists of 7858 .tif files (between 40 and 146 per patient). Most 
cases (101) have 3 sequences available (pre-contrast, FLAIR, and post-contrast). 
For the cases that have either post- or pre- contrast missing, sequences are 
replaced with FLAIR sequences, such that all images are 3-channel (RGB). The 
mask images are 1-channel (black and white). These segmentation masks were 
approved by a board-certified radiologist at Duke University.4 

 
In addition to the .tif images, there is a .csv file, which includes Tumor genomic 
clusters and patient data. 
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Figure 1. An MRI image of a patient’s skull on the left with a mask of an expertly annotated 
segmentation of the cancer on the right. The image on the left will be the input to our model and the 
mask will serve as ground truth during training. 

CODE 
In this section we will provide descriptions of our programming setup and 
current architecture. Link to Code on Google Colab: 
https://colab.research.google.com/drive/1Q7IudClorJ97dHyWiLb1KcldYxuJ-jxW?u
sp=sharing  
 
Google Colaboratory and PyTorch 
This convolutional neural network problem, like many other deep learning tasks, 
requires significant processing power for training. GPUs are used for deep 
learning tasks, since they have a large number of cores and can therefore do 
multiple parallel computations faster than CPUs. Because of this, we set up our 
project in Google Colaboratory (Colab), which allows us to make use of Google’s 
free NVIDIA Tesla K80 GPU. Colab also allows for easy sharing of code between 
team members through integration between Google Drive and GitHub. 
 
In addition, we utilize PyTorch, a python library similar to Numpy but optimized 
for use with GPUs. It is often used for deep learning tasks since it is faster and 
more user-friendly than other options, such as TensorFlow. Furthermore, we 
were able to find many references that used PyTorch, which are helpful as we 
process and train our dataset.  
 
Preprocessing 
Before training, we perform minimal processing to our data. First, MRI stacks are 
cropped in each dimension to remove black space. After cropping, the resulting 
stacks are padded to make them square in the x and y direction and then scaled 
to 128x128. Dimensions of 128x128 were selected for our images as larger sizes 
caused our Google Colab notebook to crash due to insufficient RAM.  Finally, we 
normalize our dataset by rescaling all intensities to be between the 10th and 99th 
intensity percentiles, subtracting the mean of the rescaled dataset, and dividing 
by its standard deviation. 
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We implemented skull stripping using a pre-trained model12 but found that this 
model not only stripped the skull but often the entire tumour we were trying to 
segment leading to worse performance. 

 
Figure 2: Example images of skull stripping removing the skull and cancer regions. The first two 
examples demonstrate the skull stipping algorithm removing cancerous sections of the brain. 
 
Data Augmentation 
To give the model robustness and the ability to generalize, we implemented data 
augmentation in 5 different forms. Starting off with some commonly used 
methods, the MR images were scaled by a randomly selected value between 0 and 
5% in either the positive or negative direction. Next, rotation was implemented, 
which similarly rotated the images by a randomly-selected value in the range of 
-15 and +15 degrees. A horizontal flipping method was also added, that either 
flipped or did not flip our images based on a randomly-generated number 
between 0 and 1 and a probability threshold of 0.5. Then, because it was found in 
one study that brightness and elastic deformation are the two best augmentation 
techniques for training a standard 3D U-Net, as they significantly improve Dice 
loss, brightness was further adjusted and elastic deformation was applied to the 
training data.5 Image brightness was adjusted using gamma and gain values 
selected between 0.8 and 1.2, while elastic deformation was applied using a 
square deformation grid over the axis [(0, 1), (0, 1)] with displacements sampled 
from a normal distribution (standard deviation = 2) and smoothing performed by 
a spline filter. The values used in these methods were selected in correspondence 
to the methods used in successful studies. Using these augmentation methods 
generated a larger dataset for the model to train on.  
 
UNet Architecture 
The U-Net architecture is the standard for image segmentation. While the original 
U-Net takes in an input image size of 572x572x3, our input image size is 
128x128x3, as chosen in the pre-processing step. Due to this difference, 
intermediate dimensions in our solution differ from the original U-Net, although 
the steps are the same. This architecture is broken up into 3 sections: contraction, 
bottleneck, and expansion. In contraction, two 3x3 convolution + ReLu layers are 
applied to the input and followed with  a 2x2 max pooling with stride 2 for 
downsampling.6 The bottleneck layer then applies two 3x3 CNN layers as well as 
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a 2x2 up convolution layer.6 Finally, the input is then passed on to the expansion 
section, which upsamples the feature map, applies a 2x2 convolution, 
concatenates with the corresponding feature map from contraction, and applies 
two 3x3 convolutions, each of which is followed by a ReLU.6 With 4 blocks of 
contractions and 4 blocks of expansions, this totals to 23 convolutional layers in 
the entire neural network. We experimented with reducing and increasing the 
number of blocks in the contraction and expansion layers to see the effect on the 
accuracy of our model. However, we found that the 4 block version was the most 
successful. 
 

 
Figure 3: U-Net with input size of 128x128x3.11 

 
The loss weighting scheme used by the U-Net architecture to train the network 
ensures that there is a higher weight at the border of segmented objects for every 
pixel.6 This is achieved by applying a pixel-wise softmax on the resultant image, 
followed by a dice loss function, chosen as it is a popular option for image 
segmentation tasks. The loss function measures overlap between two samples 
and is based on the Dice coefficient. This measure ranges from 0 to 1 where a 
Dice coefficient of 1 denotes perfect and complete overlap.7  We experimented 
with two optimizers-- stochastic gradient descent, and Adam, both from PyTorch. 
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The stochastic gradient descent optimizer is typically used with hyperparameters 
selected in accordance to those used in the U-Net paper and commonly used for 
CNNs, which were learning rate = 0.01, momentum = 0.99, batch size = 16, epochs 
= 50.8 The parameters used in the PyTorch Adam optimizer are learning rate = 
0.001, beta1 = 0.9, betal 2=0.999, and epsilon = 10E-8.10 We found that the Adam 
optimizer yielded better validation performance than stochastic gradient descent. 
We suspect that this is because, while stochastic gradient descent maintains a 
constant learning rate during training, Adam has an adaptive learning rate that 
changes based on the average and the uncentered variance of the weights.10 The 
beta parameters are responsible for controlling the decay rates of these moving 
averages, and the default values being set close to 1 result in bias correction 
towards zero.10 This is a feature that is unique to Adam and allows it to give quick 
and accurate results.   
 
RESULTS 
For our baseline U-Net, we split our dataset into 90% training and 10% validation. 
After 50 epochs of training, it can be seen that the dice loss function decreased for 
both the training and validation datasets, with validation loss dropping from a 
value of 0.58 to 0.35, and the training loss dropping from 0.46 to 0.04 (Figure 5). 
The average dice coefficient accuracy, in contrast, increased and leveled off to 
about 0.81 with the best validation mean accuracy of 0.8314 (Figure 5). 
 

 
Figure 4: Examples of our baseline U-Net model output compared with ground truth. Green 
annotation represents the ground truth and red annotation shows what is output by our model after 
50 epochs.  
 

5   



 

 
Figure 5: The left plot depicts the dice loss function as a function of epoch number for both the 
training (blue) and validation (orange) set. The right plot displays the average DSC accuracy as a 
function of epoch for the validation set. 
 
Comparing our final results with the results obtained from the baseline U-Net 
structure alone, data augmentation seemed to improve our model’s performance, 
yielding a best validation mean accuracy of 0.86 instead of 0.83 after 50 epochs.  
This time, a test set was also included to provide an unbiased evaluation of our 
model, but it was observed to have performed worse than both the training and 
validation sets, as shown in Figure 6. For this final model, we split our dataset 
into 80% training, 10% validation, and 10% testing, and used the parameters 
listed on the screen. Adam was selected as our optimizer, as it proved to be more 
accurate than stochastic gradient descent due to its adaptive training rate. While 
it was intended for our final model to include skull stripping, brightness 
adjustment, and elastic deformation, these methods were ultimately excluded 
from our final model as they appeared to worsen validation performance, 
yielding best validation accuracies within the 0.7-0.8 range. One potential 
explanation for this may be that all of the images in the dataset are relatively 
uniform in appearance; thus, introducing these different inputs train the model 
on features it will likely never see. 
 
Again, the dice loss function decreased for both the training and validation 
datasets, with validation loss dropping from a value of 0.73 to 0.32, training loss 
dropping from 0.69 to 0.04, and testing loss dropping from 0.8 to 0.38 (Figure 7). 
The average dice coefficient accuracy, in contrast, increased and leveled off to 
about 0.94 for training, 0.84 for validation, and 0.78 for testing with the best 
validation mean accuracy of 0.8314 (Figure 7). The generalization gap observed 
for this final model with data augmentation implemented appears to have 
slightly decreased compared to the aforementioned baseline model. 
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Figure 6: Examples of our model’s output with data augmentation (scaling, rotation, horizontal 
flipping) compared with ground truth on the same MRI scans from Figure 3. Green annotation 
represents the ground truth and red annotation shows what is output by our model after 50 epochs.  
 

 
Figure 7: The left plot depicts the dice loss function as a function of epoch number for the training 
(blue), validation (orange), and testing (green) datasets. The right plot displays the average DSC 
accuracy as a function of epoch for the same three datasets. 
 
FUTURE DIRECTION 
We still believe that skull stripping would help the model's accuracy because we 
noticed that in some of the model’s output, sections of the skull were marked as 
cancer.  We believe that had we had the ground truth to train the skull stripping 
model on our dataset we would have had more success.  However, it is time 
consuming to make such ground truths so alternatively morphologies can be 
used on the output of the skull stripping to fill in gaps where brain cancer was 
stripped out.  This however, will not address that issue in the first image of figure 
2 where a large section on the edge of the brain is missing.  For cases like this, 
perhaps an algorithm can be used to predictively modify the output of the skull 
stripping model based on assumptions on what its general shape should look like. 
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